PREVIOUS YEAR QUESTION

The ratio of the shortest wavelength of two spectral series of hydrogen spectrum is found to be about 9. The spectral series are :

Explanation

Shortest wavelength can found when $n_2 = \infty$

$$\lambda_{shortest} = RZ^2 \left\{ rac{1}{n_1^2} - rac{1}{\infty^2}
ight\}$$

Here n₁ = series number.

$$\Rightarrow \lambda_{shortest} = rac{RZ^2}{n_1^2} = rac{R(1)^2}{n_1^2}$$

 $\therefore rac{\lambda_A}{\lambda_B} = \left(rac{n_B}{n_A}
ight)^2$
Given, $\left(rac{n_B}{n_A}
ight)^2 = 9$
 $\Rightarrow rac{n_B}{n_A} = 3$

 \therefore Series number of B = 3 \times Series number of A

So,

If series number of A is Lyman(n = 1)

then series number of B is Paschen(n = 3).